Current Progress – Community Treatment

New slurry pump on site ~ June, 2017

A new, custom dual piston slurry pump built by Terrasimco is being commissioned in the SCWO prototype after undergoing testing with solids slurries at high pressure at the manufacturer.  The pump was designed to reliably pump high viscosity slurries at lower flow rates and with a larger maximum particle size than our previous slurry pump.






 11 hour run with biosolids ~ May, 2017

On May 31, 2017, with the help of our two new operators, Luke Amrhein and Mahendra Joshi, we ran for 11 hours in steady state condition with a feedstock of 5% solids and 5% isopropyl alcohol (IPA)--the energy equivalent of 15% solids. Organic conversion was 99.9%, and the run rate represented the equivalent of 1,350 people/day. 

Luke joined Duke in May from a local engineering lab, and Mahendra is a Duke MS student in Turbomachinery Aeromechanics working with us for the summer.


Energy recovery investigation ~ April, 2017

Over the past 10-12 months, the team has been evaluating the energy efficiency of the current prototype and investigating the energy efficiency and energy recovery potential for the next generation design. We've considered a range of energy recover technologies, system designs and scaling factors to maximize the energy balance of the second generation prototype. Preliminary designs are being modeled and refined with the help of a consultant, Dominion Engineering.

Image from:



 Sr. Process Engineer joins the team ~ February, 2017


Kobe Nagar joined the Duke SCWO team in February, 2017.  He brings over 15 years of experience in the chemicals, power and defense industries.  Kobe is taking the lead on energy recovery and the design of the next generation SCWO prototype. 




Increasing our operational support ~ September, 2016

Walt Beckwith joined Duke in September, working part time and bringing a wealth of valuable hands-on experience with industrial equipment and processes. Walt contributes to the design, specification, commissioning, operation and maintenance of the SCWO prototype and its components.


Most successful solids run to date ~ June, 2016

On June 23 we ran the prototype for five hours in steady state on a feedstock slurry of 10% dog feces solids. This was both our longest run in steady state and the highest concentration of solids we've run. A co-fuel of 4% isopropyl alcohol was added to the feed slurry, but the solids quantity processed represented the waste of about 200 people. COD removal was very high, >99%. The system effluent was clear and free of odor. The ash particle size was small and settled out easily. The run was ended with a controlled shutdown when the feedstock was used up. 

Feedstock pre-processing results ~ May, 2016

In preparation for upcoming solids testing, preprocessing methods to reduce the particle size of our feedstock below 200 micron have been investigated to accommodate the specifications of the double-hose diaphragm slurry pump. Multiple feedstocks were considered: chicken and cow manure, dog feces and biosolids from a local wastewater treatment plant.  The dog feces and biosolids could be processed using a combination of a shearing mixer and colloid mill. Up to 99% of the biosolids and 90% of the dog feces slurry particles were reduced to less than 200 µm. The viscosity of the biosolids slurry was significantly higher than that of the dog poop due, perhaps, to polymers added to the biosolids during dewatered.

Two new SCWO specialists join the team ~ February, 2016

Florencia Yedro started at Duke January 18. She joins us from the University of Valladolid, Spain where she completed her PhD in the High Pressure Processing Group.


Sherif Elsayed started at Duke on February 15.  He joins us from the Karlsruhe Institute of Technology where he worked on his PhD in Supercritical Water Gasification.


Article Published in 'Journal of CO2 Utilization' ~ June, 2016

In an article titled “Separation of N2/CO2 Mixture Using A Continuous High-pressure Density-driven Separator”, Reza Espanani and colleagues from the Carbon Recycling Center at the University of Missouri demonstrate the possibility of capturing CO2 produced by supercritical water oxidation before it is released into the atmosphere.


Article Published in 'Chemosphere' ~ December, 2015

Andy Miller et al. article titled “Supercritical Oxidation of a Model Fecal Sludge Without the Use of a Co-fuel” describes the bench scale SCWO reactor used at the University of Missouri to inform the design of the prototype built at Duke.  The effects of temperature, pressure, feed concentration and excess oxygen level on the conversion and heat transfer efficiency were evaluated using a factorial design.


UNC Water & Health Conference & Symposium on Supercritical Fluids ~ October, 2015

Primary Investigator (PI) Marc Deshusses presented the project at the University of North Carolina's annual Water & Health conference October 28, 2015 in a session on wastewater treatment. Click on the image to the right to view his presentation.

CO-PI, Dr. William Jacoby presented the project in a talk titled “Continuous Treatment of Fecal Sludge in a Technical-scale Supercritical Water Oxidation System” at the 11th International Symposium on Supercritical Fluids” held October 11th-14th, 2015 in Seoul, South Korea.

 Completed Liquids Testing ~ October, 2015

Liquids experimentation was completed in October.  Detailed analysis of the results followed in November. The team began investigating and designing a fecal sludge pre-processing system which provides particle size reduction to support successful slurry pumping and subsequent solids testing. We are also considering alternate feedstocks for testing since the biosolids we have been using contain additives that facilitate agglomeration.  

Liquids Testing ~ July, 2015

Since May, we have been running the prototype on isopropyl alcohol at various feedstock concentrations and flow rates to test the operating range of the system. We are analyzing COD (Chemical Oxygen Demand) removal and temperature profiles in the reactor and heat exchangers. We are also measuring O2, CO2 and CO in the vapor effluent to confirm that in steady state, the organic matter fed into the system is converted to CO2 and H2O. Running at supercritical conditions for over 130 hours has uncovered mechanical issues in the system which we’ve addressed along the way. We are currently testing lower feed concentrations at higher flow rates that reflect our original target operating specifications of ~1000kgwet/day flow rate with 10-20% solids.

Oxidized Fecal Sludge ~ May, 2015

On May 8, we successfully oxidized fecal sludge in the SCWO prototype for the first time. The bottle on the left contains a sample of the feedstock fed to the reactor; the bottle on the right shows the reactor effluent. For this initial test, we prepared a slurry with 3% solids fecal sludge and isopropyl alcohol mixed in as a co-fuel. We ran the system while continuously pumping this slurry for 3.5 hours. The solids at the bottom of the effluent vial are comprised of harmless salts that precipitate at supercritical conditions. This successful run marked the departure of veteran project engineer Doug Hendry and the arrival of our new engineer, Kura Duba.


Convening at Duke ~ March, 2015

In March, Program Officers Carl Hensman and Sun Kim from the Gates Foundation spent the day at Duke getting an update on our progress. They were able to see the reactor in operation and tour the container after cool-down. Bill Jacoby, our co-PI from the University of Missouri was here for his first visit, along with his doctoral student, Andy Miller. Duke's Jay Golden presented the economic model he has been developing with support of his graduate students. Kura Simon Duba who recently earned his PhD in supercritical fluids from the University of Trento was also able to join us. Kura will be starting full time on the project in the end of April.

Oxidizing IPA ~ February, 2015

In January, we began introducing dilute isopropyl alcohol (IPA) to the system and reached supercritical temperature and pressure. We have been running the prototype once or twice a week, fine tuning operation and the start-up procedure. In February we achieved steady state operation with full conversion of 6-8% IPA. Data collected during operation with IPA is enabling us to characterize and optimize heat transfer throughout the system and prepare for upcoming treatment of fecal sludge.

PLC and leak testing ~ December, 2014

In December, leak testing was successfully performed starting with low pressure air and working up to air and water at high pressure (3700 psi). The control system is operating reliably to date with ~75% of all control loops tested. Refinements in the system’s start-up procedure and equipment modifications have been made based on experience gained over numerous runs and varying conditions.


Piping complete ~ November, 2014

In November, the final connections were made to what is now a closed system. Leak testing and control system testing began. Insulation was partially installed to ensure proper piping and thermocouple alignment. The insulation will be completed before testing at high temperatures begins.



Pressure Vessel Code Inspection ~ October, 2014

In October, the NC Department of Labor reinspected our air tank and pressure relief valve configuration and confirmed it qualified for pressure vessel code certification. See the 'Photos and Videos' tab for photos of the capilary tubing that was installed as well as the control system interface.  Fault code programming and data logging were completed, making the control system ready for testing.

 Heat exchangers installed ~ September, 2014

In September, the last major component of the system, the custom designed heat exchangers were installed in container. The heat exchangers use a coil in coil design. As the process effluent flows through the inner pipe, it heats the water and air flowing through the upper outer coil and the slurry flowing through the lower outer coil.



Operation of Feluwa slurry pump ~ August, 2014

The Feluwa high-pressure slurry pump was run at our designed operating pressure, another successful step in the control system programming well underway.





Furnace, compressor and water pump tested ~ July, 2014

With power to the container, the bake-out procedure was performed on the Mellen furnace, the compressor and water pump were tested, and the control system software was employed to run the equipment for the first time. The control system logic underwent a detailed review.



480v power turned on ~ June, 2014

In June, our container’s electrical system passed inspection, and we were able to power up the unit for the first time. In addition to the main disconnect on the outside of the container, two power panels, a control panel, overhead lights and power outlets had been installed inside the container. This opened the door for component level testing of equipment.



Furnace mounted ~ April, 2014

Large components including the furnace and the high-pressure water pump were being mounted in the container. Electrical work to bring 480v electricity from a neighboring university building into the container was well underway. Procurement continued and entered its final stage.




Toilet Fair in Delhi, India ~ March, 2014

Six members of the SCWO project from Duke and the University of Missouri attended the Toilet Fair in Delhi co-hosted by the Government of India’s Biotechnology Department and the Bill & Melinda Gates Foundation. The fair provided a unique opportunity to talk to practitioners in the field, other research teams and entrepreneurs.


Milton Roy water pump in house ~ December, 2013

By the end of 2013, the prototype’s high pressure separation and depressurization system was designed, and the Feluwa high pressure slurry pump was ordered. ChemCAD temperature modeling of the prototype design was achieved with the help of Battelle. At the same time, the lab-scale SCWO unit at the University of Missouri was successfully oxidizing simulant using air as an oxidant.


Technical design review with Battelle Corporation ~ October, 2013

Duke entered into an agreement with Battelle in August, 2013 to provide technical consulting on the design of the supercritical water oxidation prototype. In October, the Duke team met with experts from Battelle in Richmond, Kentucky and toured the BGCAPP SCWO plant under construction there.




Shipping container delivered ~ September, 2013

The 20’ x 8’ x 8’ shipping container painted in Duke-blue was positioned behind Hudson Hall at the Pratt School of Engineering on Duke’s main campus. Meanwhile, prototype design was entering its final stage, and the procurement of parts was ramping up. Key components such as the air compressor and furnace were ordered.



Jose Abelleira joins the team ~ April, 2013

In August, 2013, Jose Abelleira came to Duke as a postdoctoral associate from the University of Cadiz in Spain, bringing with him experience in the design, construction, modeling and operation of SCWO systems. 




The project begins ~ April, 2013

Duke University in collaboration with the University of Missouri was awarded $1.18 million from the Bill & Melinda Gates Foundation to design, build and test a prototype fecal sludge treatment system based on supercritical water oxidation technology. Marc Deshusses, Doug Hendry and Kathy Jooss represented the project team at a Gates Foundation grantee convening in Barcelona, Spain.