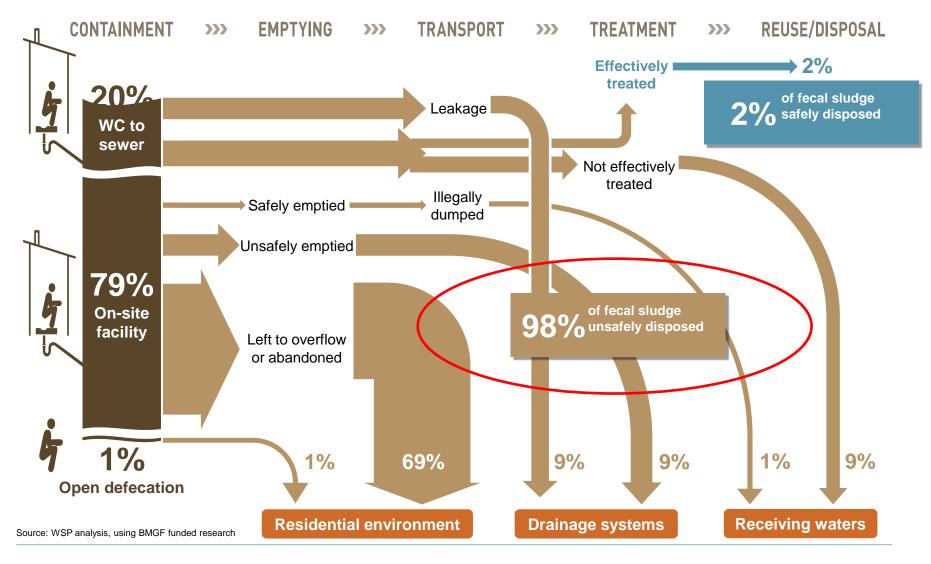
Treatment of Fecal Sludge in a Prototype Supercritical Water Oxidation Reactor

Marc A. DESHUSSES

Department of Civil and Environmental Engineering Duke University, Durham, North Carolina, USA

Project team: William Jacoby (Co-PI, University of Missouri), Jay Golden (Co-PI, Duke): Kathy Jooss, Jose M. Abelleira-Pereira, Doug Hendry, Andy Miller, Kurabachew S. Duba, Allen Busick, Reza Espanani



<u>Funding:</u> Bill & Melinda Gates Foundation

POOR FSM: INSTITUTIONAL OPEN DEFECATION

Untreated sludge ends directly in the environment: no service chain (Dhaka, Bangladesh)

Content of Fecal Waste

U I S

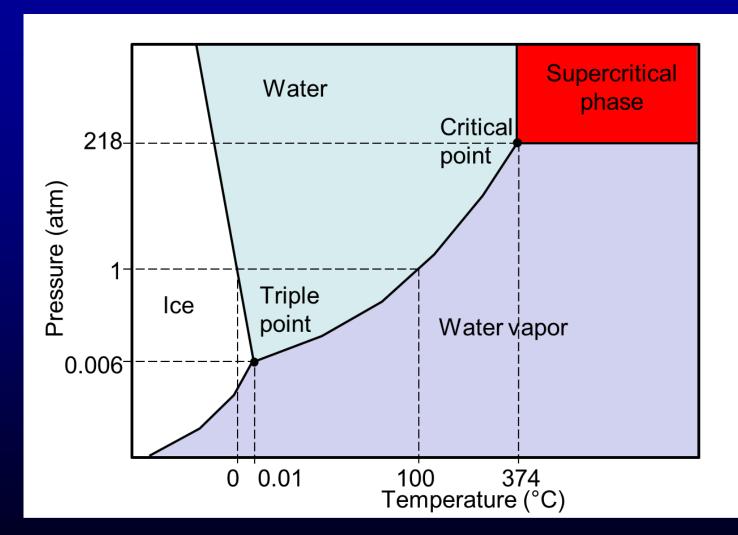
Feces: 70-520 g/(p day) ~ 80% moisture

- Fats (5-25%)
- Carbohydrates (10-30 %)
- Nitrogenous materials (2-3%)
- Minerals (5-8%)
- Bacteria and bacterial debris (10-30%) Where all pathogens and most of the energy is ~80 g_{dry} , 107 g COD, ~2 g N, **1.6 MJ per day**

Urine: 0.6 – 1.1 L/(p day)

- •Organic salts (38%)
- •Urea (36%)
- •Organic compounds (13%)
- •Ammonium salts (13%)
- Is where most of the nitrogen is $\sim 7 \text{ gN/(p day)}$

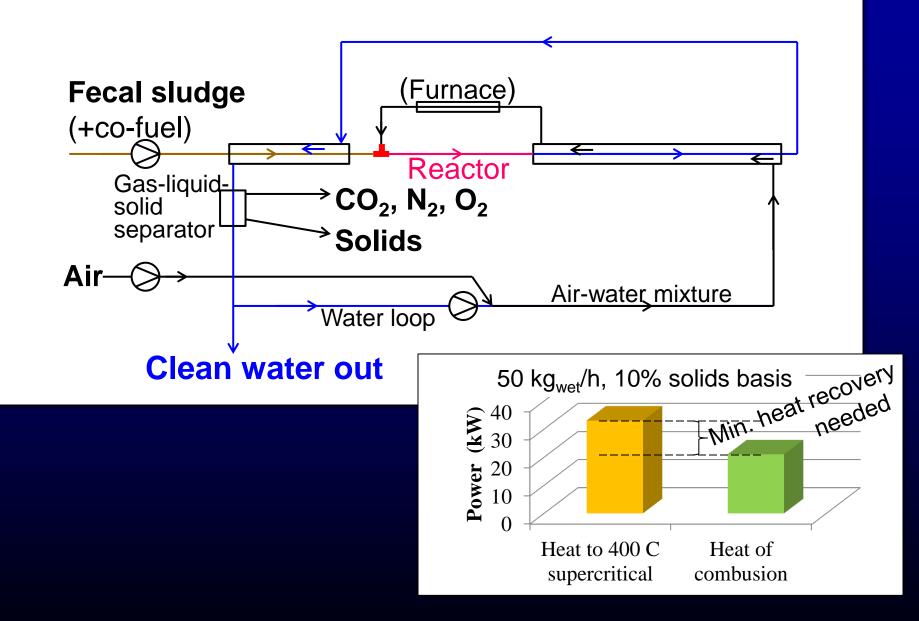
~440 W h/(p d) 1 pig ~ 3 persons



Omni Processor for Fecal Waste

Sanitation for the urban poor using supercritical water oxidation (SCWO). Prototype unit will treat the waste of ~1200 people (~450-530 kWh/d)

In supercritical water, organics are rapidly oxidized (in seconds) resulting in heat, and CO₂


This is a pressure cooker on steroids!

Pilot unit at Duke

- Heat and energy recovery
- Metallurgy and corrosion
- Process control

Process Flow Diagram

System characteristics

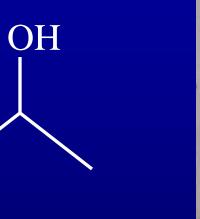
Basic characteristics

- 100-150 kg dry/day
- 1-2 m³/day
- Assume feed ~7-15% solids
- Reactor ID: 19 mm
- Reactor length: 4.0 m
- Heat exchanger length: 39 m
- Reynolds #: 25,000 40,000
- Residence time in reaction section = 2.5 to 4.5 seconds!

Anti corrosion and plugging measures

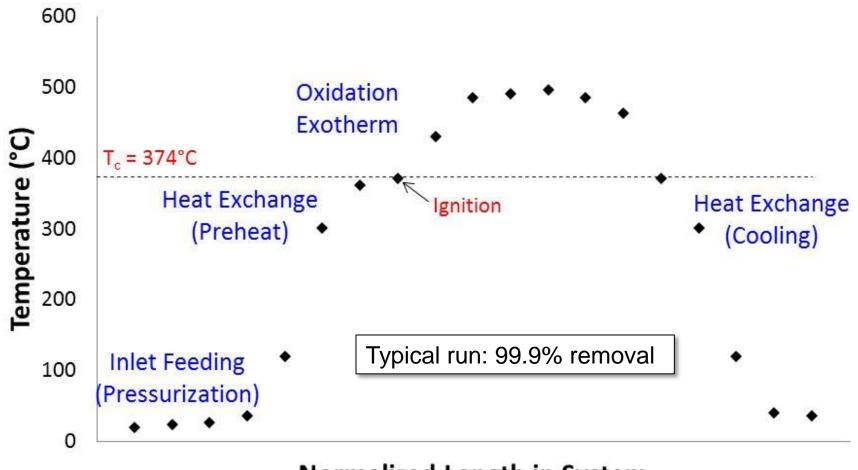
- High Re number, slight down slope
- Minimize transition zones
- Reactor and part of heat exchanger in Inconel 625
- Tandem HEPS
- Periodic maintenance

<u>Other</u>


- Startup with IPA
- Use air as oxidant
- Could retrofit to SCW gasification

Pilot unit construction

SCWO Feedstocks Processed

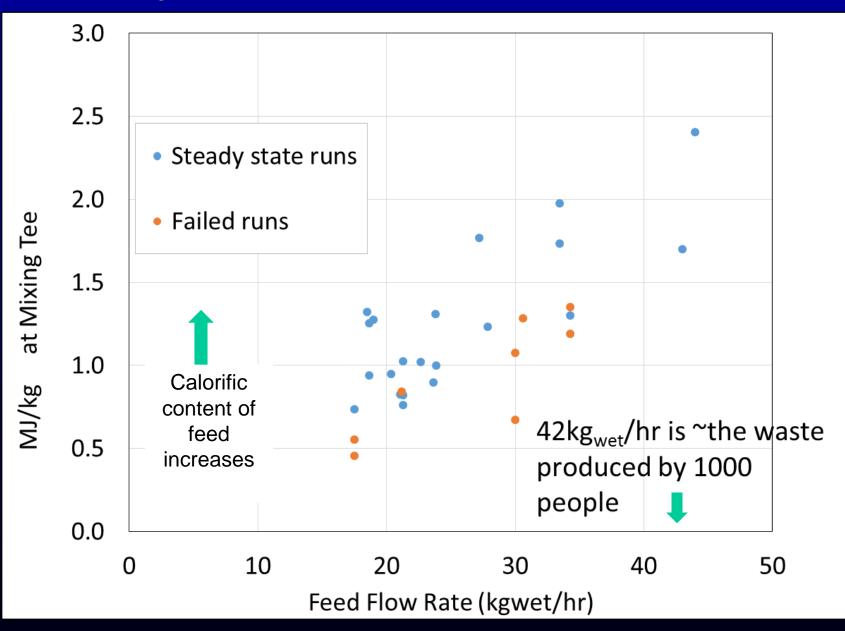


Isopropanol (IPA) Starter and model fuel Fecal Simulant (lab only) High solids-content (16%) secondary sludge Ash content: 24% HHV: 15.2 MJ/kg dry

Test run with 1.3% isopropanol

Normalized Length in System

Basic Kinetic Determinations


(5% solids)

excess O_2

excess O_2

excess O_2

System Characterization with IPA

Secondary sludge treatment

Biosolids as received

Feed

Slurry feed: 4.3% biosolids 9% IPA

Effluent After settling

Sludge Treatment (with IPA as co-fuel) Summary

Sample		Total Solids (g/kg)		Volatile Solids (g/kg)	Н	Heat of Combustion (MJ/kg)		COD (mg/L		L)	
Raw Sludge		1	.49	46		14.1		107000			
			Influent		Efflue		nt		Re	emoval	
			3 wt. %	5 sludge + 9% II	PA	Transient	Stead	ly Stat	e		
	COD (mg/L)			214000		43	-	70		> 9	9.97%
	Total N (n	ng/L)		10875		300	2	00		→ 9	8.1%
	NH₃ (mք	g/L)		443		133	1	7.6			
	NO₃ (mį	g/L)		183		51.7	1	5.9			
	NO₂ (mĮ	g/L)		14.9		0.2	C).4			
	PO4 ⁻³ (m	g/L)		4930		32.2	6	7.9		→9	8.6%
	рН			6.8		4.3	7	.02			
	Conduct (µS/cn	-		2560		237	6	59			

Concluding Remarks: Why I am Optimistic...

- SCWO achieves both waste treatment and pathogen control extremely fast. We can even co-treat hazardous wastes.
 Process produces clean water, without odor, SOx, or NOx...
- Selling "high value added" by products can be a driver Sell a 10 L shower 5-10 cents
 = \$1.7-3.4 per kWh!
- Many challenges remain, including slurry pumping, long-term operation (plugging and corrosion), and process economics

Acknowledgments

Gates Foundation for funding

http://sanitation.pratt.duke.edu/

Other projects

Low-tech self-sanitizing latrine Poster #7 Odor issues and control in FSM Poster #22